Class- XII
 Mathematics

Chapter-1 Relation and Functions

Q. 1 Consider $\mathrm{f}: \mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$ given by $\mathrm{f}(\mathrm{x})=\frac{4 x+3}{3 x+4}$. SHow that f is bijective function.
Q. 2 Show that the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x}{x^{2}+1} \forall x \in R$ is neither one-one nor on - to.
Q. 3 Let $A=R-\{3\}, B=R-\{1\}$. Let $f: A \rightarrow B$ be defined by $f(x)=\frac{x-2}{x-3} \forall x \neq 3$. Show that f is one-one $\&$ on-to Function.
Q. 4 Consider $f: R_{+} \rightarrow[-5, \propto)$ given by $f(x)=9 x^{2}+6 x-5$, show that f is bijective, when R_{+}is the set of all nonnegative real numbers.
Q. 5 A function $\mathrm{f}: \mathrm{R} \rightarrow(-1,1)$ is defined by $\mathrm{f}(\mathrm{x})=\frac{x}{1+|x|} \forall x \in R$, then prove that f is one-one and on - to
Q. $6 \mathrm{f}: \mathrm{N} \rightarrow N$ be defined by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if } n \text { is odd } \\ \frac{n}{2} & \text { if } n \text { is even, }\end{array} \quad \forall n \in N\right.$, show that f is not one-one but on to function.
Q. 7 Prove that the function $f: N \rightarrow N$ given by $f(x)=x^{2}+x+1$ is one-one but not on-to
Q. 8 Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}+x$ is a bijective function.
Q. 9 Show that the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{n}-(-1)^{\mathrm{n}} \forall n \in N$ is a bijection.
Q. 10 Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even }\end{array}\right.$, is both one-one and on-to
Q. 11 Determine whether the relation R on Z defined by $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Leftrightarrow|a-b| \leq 5$ is reflexive, symmetric and transitive
Q. 12 Let a relation R_{1} on the set R of real numbers be defined as $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}_{1} \Leftrightarrow 1+a b>0 \forall a, b \in R$. Show that R_{1} is reflexive and symmetric but not transitive.
Q. 13 Check whether the relation R in set of real numbers R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.
Q. 14 Show that the relation R on the set $A=\{x \in z: 0 \leq x \leq 12\}$ given by $R=\{(a, b):|a-b|$ is multiple of 4$\}$ is an equivalence relation. Also find the set of all elements related to 2 .
Q. 15 Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation. Also show that all the elements of $\{1,3,5\}$ are related to each other and all the element of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$
Q. 16 Let $A=\{1,2,3 \ldots \ldots, 9\}$ and R be the relation in $A \times A$ defined $b y(a, b) R(c, d)$ if $a+d=b+c$ for (a, b) $(c, d) \in A \times A$ Prove that R is an equivalence relation. Also obtain the equivalence class $[(2,5)]$
Q. 17 Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) R(c, d) \Leftrightarrow$ $a d(b+c)=b c(a+d)$. Show that R is an equivalence relation on $N \times N$
Q. 18 If R_{1} and R_{2} are two equivalence relations on a set A, then show that $R_{1} \cap R_{2}$ is also an equivalence relation on A .
Q. 19 Let R be a relation on the set A of ordered pairs of Positive integers defined by $(x, y) R(u, v)$ if and only if $x v-y u$. Show that R is an equivalence relation.
$Q .20$ Determine whether the relation R defined on the set R of all real numbers $a s=\{(a, b): a, b \in R$ and $a-b+$ $\sqrt{3} \in S\}$ where S is the set of all irrational numbers, is reflexive symmetric and transitive.

Chapter-2

Inverse Trigonometric Functions
Q. 1 Find Domain of the following functions:
(a) $f(x)=\sin ^{-1}(2 x-5)$
(d) $f(x)=\sin ^{-1}\left(-x^{2}\right)$
(b) $f(x)=\sin ^{-1} \sqrt{x-1}$
(e) $f(x)=\cos ^{-1}\left(4-x^{2}\right)$
(c) $f(x)=\cos ^{-1}(2 x-1)$
(f) $f(x)=\sin ^{-1} x+\cos x$
Q. 2 Evaluate $\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)$
Q. 3 Evaluate $\sin ^{-1}\left[\cos \left\{\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right\}\right.$
Q. 4 Evaluate : $\cos \left[\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right]$
Q. 5 Evaluate : $\sin \left(2 \tan ^{-1} \frac{1}{4}\right)+\cos \left(\tan ^{-1} 2 \sqrt{2}\right)$
Q. 6 Evaluate : $\tan \left(2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right)$
Q. 7 If $\sin \left[\cot ^{-1}(x+1)\right]=\cos \left(\tan ^{-1} x\right)$, then find x
Q. 8 Prove that $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}-1<x<1$
Q. 9 Prove that $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{2}\right)$
Q. 10 Simplify: $\operatorname{Cot}^{-1}\left(\frac{1}{\sqrt{x^{2}-1}}\right)$ for $\mathrm{x}<-1$
Q. 11 Write the following functions in the simplest form:
(a) $\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), \frac{-1}{\sqrt{3}}<\frac{x}{a}<\frac{1}{\sqrt{3}}$
(b) $\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right)$
(c) $\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)=\frac{\pi}{4}-\frac{x}{2}, \frac{-\pi}{2}<x<\frac{\pi}{2}$
Q. 12 Prove that $\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} \mathrm{x}\right)\right\}\right]=\sqrt{\frac{1+x^{2}}{2+x^{2}}}$
Q. 13 Solve for x : $\cos \left(2 \sin ^{-1} \mathrm{x}\right)=\frac{\pi}{2}$
Q. 14 Solve the following equations:
(a) $\left.\sin ^{-1}(1-x)-2 \sin ^{-1} x\right)=\frac{\pi}{2}$
(b) $\cos _{-1}(\sqrt{3} x)+\cos ^{-1} x=\frac{\pi}{2}$
Q. 15 Find least value of $\left(\sin ^{-1} \mathrm{x}\right)^{2}+\left(\cos ^{-1} \mathrm{x}\right)^{2}$.
Q. 16 If $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$, find x
Q. 17 If $x, y, z \in[-1]$ such that $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$ then find the values of
(a) $x y+y z+z x$
(b) $x(y+z)+y(z+x)+z(x+y)$
Q. 18 If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$ then find the value of $x^{100}+y^{100}+z^{100}-\frac{9}{x^{101}+y^{101}+z^{101}}$
Q. 19 Prove that $\sec ^{2}\left(\tan ^{-1} z\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)=15$
Q. 20 If $\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2}$ and $\tan ^{-1} x-\tan ^{-1} y=0$, then find the value of $x^{2}+x y+y^{2}$

Chapter-3 \& 4

Matrices \& Determinants

Q. 1 If $2\left[\begin{array}{ll}3 & 4 \\ 5 & x\end{array}\right]+\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}7 & 0 \\ 10 & 5\end{array}\right]$, find ($x-y$)
Q. 2 Find non zero value (s) of x satisfying the matrix equation:
$\mathrm{x}\left[\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right]+2\left[\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right]=\left[\begin{array}{cc}x^{2}+8 & 24 \\ 10 & 6 x\end{array}\right]$
Q. 3 Find matrix A such that $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] A=\left[\begin{array}{cc}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right]$
Q. 4 Find the value of x such that $\left[\begin{array}{lll}1 & \mathrm{x} & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$
Q. 5 Let $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right], C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$. Find matrix D such that $\mathrm{CD}-\mathrm{AB}=0$
Q. 6 (i) If A is a square matrix such that $A^{2}=A$, then prove that $(1+A)^{3}-7 A=1$
(ii) If A is a square matrix such that $A^{2}=I$, then find the simplified value of $(A-I)^{3}+(A+A)^{3}-7 A$
Q. 7 If $\mathrm{P}(\mathrm{x})=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$, then show that $\mathrm{P}(\mathrm{x}) \mathrm{P}(\mathrm{y})=\mathrm{P}(\mathrm{x}+\mathrm{y})$
Q. 8 If $\mathrm{A}\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and I is the unit matrix of order 2×2; show that $\mathrm{I}+\mathrm{A}=(\mathrm{I}-\mathrm{A})\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
Q. 9 There are two families. Family P consists of 3 men, 3 women and 12 children. Family Q consists of 2 men and 3 women and 4 children. The recommended daily allowance for calories is men : 2400, women: 2000, children : 1400 and for proteins men : 60g, women : 40 g and children : 35 g
(i) Using matrix multiplication, calculate the total requirement of calories and proteins of each of the two families.
(ii) Which family is an ideal family.
Q. 10 If $A=\left[\begin{array}{ll}3 & 5\end{array}\right], B=\left[\begin{array}{ll}7 & 3\end{array}\right]$, then find a non zero matrix C such that $A C=B C$.
Q. 11 If $A B=A$ and $B A=B$ then show that $A^{2}=A$ and $B^{2}=B$
Q. 12 If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$. Then show that A is a root of the polynomial $f(x)=x^{3}-6 x^{2}+7 x+2$.
Q. 13 Find the value of k if the area of the triangle is 35 sq.m. with the vertices $(k, 4),(2,-6)$ and $(5,4)$.
Q. 14 For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$ show that $A^{3}-6 A^{2}+5 A+11 I_{3}=0$. Hence, find A^{-1}
Q. 15 If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$. Find A^{-1}. Use it to solve the system of equations $2 x-3 y+5 z=11,3 x+2 y-4 z=-5$, $x+y-2 z=-3$
Q. 16 Use the product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations $x+3 z=0,-x+2 y-2 z=4$, $2 x-3 y+4 z=-3$
Q. 17 The monthly income of Aryan and Babban are in the ratio 3:4 and their monthly expenditure are in the ratio 5:7. If each saves Rs. 15000 per month, find their monthly income using matrix method.
Q. 18 Solve the system of equations using matrix method:

$$
\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=4, \frac{2}{x}+\frac{1}{y}-\frac{3}{z}=0, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2, x, y, z \neq 0
$$

Q. 19 Find a matrix X for which

$$
\left[\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right] X\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
0 & 4
\end{array}\right]
$$

Q. 20 A total amount of Rs. 7000 is deposited in three different savings bank accounts with annual interest rates of $5 \%, 8 \%$ and $81 / 2 \%$ respectively. The total annual interest from these three accounts is Rs. 550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts with the help of matrices.

Chapter- 12

Linear Programming Problems

Q. 1 Solve the following LPP graphically :

Maximise $Z=1000 z+600 y$
Subject to the constraints
$x+y \leq 200$
$x \geq 20$
$y-4 x \geq 0$
$x, y \geq 0$
Q. 2 Solve the following LPP graphically:

Minimise $Z=5 x+10 y$
Subject to constraints
$x+2 y \leq 120$
$x+y \geq 60$
$x-2 y \geq 0$
$x, y \geq 0$
MCQ's
Chapter-1
Q. 1 If $R=\left\{(x, y): x, y \in Z, x^{2}+y^{2} \leq 4\right\}$ is a relation in set Z, then domain of R is :
(a) $\{0,1,2\}$
(b) $\{-2,-1,0,1,2\}$
(c) $\{0,-1,-2\}$
(d) $\{-1,0,1\}$
Q. 2 Let $A=\{x, y, z\}$ and $B=\{1,2\}$ then the number of relations from A to B is:
(a) 32
(b) 64
(c) 128
(d) 8
Q. 3 The relation R defined in $A=\{1,2,3\}$ by a $R b$, if $\left|a^{2}-b^{2}\right| \leq 5$. Which of the following is false?
(a) $R=\{(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)\}$
(b) $R^{-1}=R$
(c) Domain of $R=\{1,2,3\}$
(d) Range of $\mathrm{R}=\{5\}$
Q. 4 Total number of equivalence relations defined in the set $S=\{a, b, c\}$ is:
(a) 5
(b) 3 !
(c) 23
(d) 33
Q. 5 Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is:
(a) 1
(b) 2
(c) 3
(d) 4
Q. 6 Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3)\}$ be a relation in A. Then , the minimum number of ordered pairs may be added, so that R becomes an equivalence relation is:
(a) 7
(b) 5
(c) 1
(d) 4
Q. 7 For real numbers x and y, we write $x R y \Leftrightarrow x-y+\sqrt{2}$ is an irrational number. Then the relation R is:
(a) reflexive
(b) symmetric
(c) transitive
(d) None of these
Q. 8 A function $f: R \rightarrow R$ defined by $f(x)-2+x^{2}$ is:
(a) not one-one
(b) one-one
(c) not onto
(d) neither one-one onto
Q. 9 Let $\mathrm{A}=\{\mathrm{x}: 1 \leq x \leq 1\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is a function defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}|x|$, then f is:
(a) a bijection
(b) injection but not surjection
(c) surjection but not injection
(d) neither injection nor surjection
Q. 10 Range of $f(x)=\sin ^{-1} x+\tan ^{-1} x+\sec ^{-1} x$ is:
(a) $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
(b) $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$
(c) $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$
(d) None of these
Q. $11 \tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$ is equal to:
(a) π
(b) $-\frac{\pi}{3}$
(c) $\frac{\pi}{3}$
(d) $\frac{2 \pi}{3}$
Q. 12 The value of $\sin \left[\tan ^{-1}(-\sqrt{3})+\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$ is
(a) 1
(b) -1
(c) 0
(d) None of these
Q. 13 The value of $\sin ^{-1}\left[\sin \left(-\frac{17 \pi}{8}\right)\right]$ is:
(a) $-\frac{\pi}{6}$
(b) $\frac{\pi}{8}$
(c) $-\frac{\pi}{8}$
(d) $\frac{\pi}{12}$
Q. 14 The value of $\cos ^{-1}\left(\cos \frac{5 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{5 \pi}{3}\right)$ is:
(a) $\frac{\pi}{2}$
(b) $\frac{5 \pi}{3}$
(c) $\frac{10 \pi}{3}$
(d) 0
Q. 15 Evaluate the determine $\Delta=\left|\begin{array}{cc}\log _{3} 512 & \log _{4} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right|$
(a) $15 / 2$
(b) 12
(c) $14 / 3$
(d) 6
Q. 16 If $A=\left[\begin{array}{ll}a & 4 \\ 4 & 0\end{array}\right]$ and $\left|A^{3}\right|=729$, then the value of ' a ' is equal to:
(a) ± 6
(b) ± 3
(c) ± 4
(d) ± 5
Q. 17 If A is 3×3 matrix such that $|A|=8$, then $|3 A|$ equals :
(a) 8
(b) 24
(c) 72
(d) 216
Q. 18 If A and B are square matrices each of order 3 and $|A|=5,|B|=3$, then the value of $|3 A B|$ is:
(a) 27
(b) 15
(c) 405
(d) 42
Q. 19 If Aij denotes the cofactor of the element aij of the determinant $\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & 7\end{array}\right|$ then value of $a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}$ is:
(a) 0
(b) 5
(c) 10
(d) -5
Q. 20 If C_{ij} denotes the cofactor of element Pij of the matrix $\mathrm{P}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4\end{array}\right]$ then the value of $\mathrm{C}_{31} \mathrm{C}_{23}\left(\mathrm{P}_{31}-\mathrm{P}_{23}\right)$ is:
(a) 5
(b) 24
(c) -24
(d) -5
Q. 21 If A is singular matrix, then $A .(\operatorname{adj} A)$ is:
(a) Singular
(b) non-singular
(c) symmetric
(d) not defined
Q. 22 Given that A is a square matrix of order 3 and $|A|=-4$, then $|\operatorname{adj} A|$ is equal to:
(a) -4
(b) 4
(c) -16
(d) 16
Q. 23 The number of all possible matrices of order 2×3 with each entry 1 or 2 is:
(a) 16
(b) 6
(c) 64
(d) 24
Q. 24 If $\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}1 & 3 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0$, then $x+3 y-3 z$ is:
(a) 1
(b) 3
(c) 4
(d) 0
Q. 25 If matrices A and B are of order $3 \times n$ and $m \times 5$ respectively, then the order of matrix $C=5 A+3 B$ is:
(a) 3×5 and $m=n$
(b) 3×5
(c) 3×3
(d) 5×5
Q. 26 If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then A^{100} is equal to
(a) $2{ }^{100} \mathrm{~A}$
(b) $2{ }^{99} \mathrm{~A}$
(c) 100 A
(d) 299 A
Q. 27 In a linear programming problem, the constraints on the decision variables x and y are $x-3 y \geq 0, y \geq 0$, $0 \leq x \leq 3$. The feasible region.
(a) is not in the first quadrant
(b) is bounded in the first quadrant
(c) is unbounded in the first quadrant
(d) does not exist
Q. 28 A linear programming problem is as follows:

Minimise $z=30 x+50 y$ subject to the constraints,

$$
\begin{aligned}
& 3 x+5 y \geq 15 \\
& 2 x+3 y \leq 18 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

In the feasible region the minimum value of z occurs at:
(a) A unique point
(b) no point
(c) infinitely many points
(d) two points only
Q. 29 The corner points of the feasible region determined by a set of constraints (Linear inequalities) are $P(0,5)$, $Q(3,5), R(5,0)$ and $S(4,1)$ and the objective function is $Z=a x+2 b y$ where $a, b>0$. The condition on a and b such that the maximum Z occurs at Q and S is:
(a) $a-5 b=0$
(b) $a-3 b=0$
(c) $a-2 b=0$
(d) $a-4 b=0$
Q. 30 The graph of the following linear programming problem when the conditions are $50 \mathrm{x}+25 \mathrm{y} \leq 500$, $x+y \leq 12$ and $x \geq 0, y \geq o$ is:
(a) feasible
(b) unbounded
(c) bounded
(d) None of the above
Q. 31 The graph of the inequality $3 x+4 y<12$ is:
(a) half plane that contains the origin
(b) half plane that neither contains the origin nor the points of the line $3 x+4 y=12$.
(c) whole XOY-plane excluding the points on line $3 x+4 y=12$
(d) None of these

Activities: i) Activity -3 (Based on Functions)
Model - (i) One-one \& on-to Functions. (Boys)
(ii) Inverse Trigonometric Functions. (Girls)

Chart - (i) Domain \& Range of all inverse trigonometric Functions. (Boys)
(ii) Number of Functions, Number of one-one functions \& on-to Functions. (Girls)

