Holidays' Homework, 2024-25

Class- XII

Mathematics

Chapter-1 Relation and Functions

- Q.1 Consider f:R $\left\{-\frac{4}{3}\right\} \rightarrow R \left\{\frac{4}{3}\right\}$ given by f(x) = $\frac{4x+3}{3x+4}$. SHow that f is bijective function.
- Q.2 Show that the function f: R \rightarrow R defined by f(x) = $\frac{x}{x^2+1} \forall x \in R$ is neither one-one nor on to.
- Q.3 Let A = R {3}, B = R {1}. Let f : A \rightarrow B be defined by f(x) = $\frac{x-2}{x-3}$ $\forall x \neq 3$. Show that f is one-one & on-to Function.
- Q.4 Consider f : $R_+ \rightarrow [-5, \propto)$ given by f(x) = $9x^2 + 6x 5$, show that f is bijective, when R_+ is the set of all nonnegative real numbers.

- Q.5 A function f : R \rightarrow (-1,1) is defined by f(x) = $\frac{x}{1+|x|} \forall x \in R$, then prove that f is one-one and on to Q.6 f : N \rightarrow N be defined by f(x) = $\begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ $\forall n \in N$, show that f is not one-one but on to function.
- Q.7 Prove that the function f : N \rightarrow N given by f(x) = x² + x + 1 is one-one but not on-to
- Q.8 Show that the function $f : R \to R$ given by $f(x) = x^3 + x$ is a bijective function.
- Q.9 Show that the function $f : N \to N$ defined by $f(x) = n (-1)^n \forall n \in N$ is a bijection.
- Q.10 Show that $f : N \to N$ given by $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x 1, & \text{if } x \text{ is even} \end{cases}$, is both one-one and on-to
- Q.11 Determine whether the relation R on Z defined by $(a,b) \in R \Leftrightarrow |a-b| \leq 5$ is reflexive, symmetric and transitive
- Q.12 Let a relation R₁ on the set R of real numbers be defined as (a,b) \in R₁ \Leftrightarrow 1 + ab > 0 \forall a, b \in R. Show that R₁ is reflexive and symmetric but not transitive.
- Q.13 Check whether the relation R in set of real numbers R defined by R = { (a,b) : $a \le b^3$ } is reflexive, symmetric or transitive.
- Q.14 Show that the relation R on the set A = { $x \in z: 0 \le x \le 12$ } given by R = {(a,b): |a b| is multiple of 4 } is an equivalence relation. Also find the set of all elements related to 2.
- Q.15 Show that the relation R in the set A = {1,2,3,4,5} given by R = {(a,b) : |a b| is even}, is an equivalence relation. Also show that all the elements of {1,3,5} are related to each other and all the element of {2,4} are related to each other. But no element of {1,3,5} is related to any element of {2,4}
- Q.16 Let A = $\{1,2,3,\ldots,9\}$ and R be the relation in A x A defined by (a,b) R (c,d) if a + d = b + c for (a,b) $(c,d) \in A \times A$ Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)]
- Q.17 Let N denote the set of all natural numbers and R be the relation on N x N defined by (a,b) R (c,d) \Leftrightarrow ad (b+c) = bc (a+d). Show that R is an equivalence relation on N x N
- Q.18 If R_1 and R_2 are two equivalence relations on a set A, then show that $R_1 \cap R_2$ is also an equivalence relation on A.
- Q.19 Let R be a relation on the set A of ordered pairs of Positive integers defined by (x,y) R (u, v) if and only if xv - yu. Show that R is an equivalence relation.
- Q.20 Determine whether the relation R defined on the set R of all real numbers as $R = \{(a,b) : a, b \in R and a b + \}$ $\sqrt{3} \in S$ where S is the set of all irrational numbers, is reflexive symmetric and transitive.

Chapter-2

Inverse Trigonometric Functions

Q.1 Find Domain of the following functions:

(d) $f(x) = \sin^{-1}(-x^2)$ (a) $f(x) = \sin^{-1} (2x - 5)$ (b) $f(x) = \sin^{-1} \sqrt{x - 1}$ (e) $f(x) = \cos^{-1}(4 - x^2)$ (c) $f(x) = \cos^{-1}(2x-1)$ (f) $f(x) = \sin^{-1}x + \cos x$ Q.2 Evaluate $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right)$ Q.3 Evaluate sin⁻¹ [cos $\left\{sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right\}$ Q.4 Evaluate : $\cos \left[sin^{-1} \frac{3}{5} + cot^{-1} \frac{3}{2} \right]$ Q.5 Evaluate : $\sin\left(2 \tan^{-1}\frac{1}{4}\right) + \cos(\tan^{-1}2\sqrt{2})$ Q.6 Evaluate : $\tan\left(2tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right)$ Q.7 If sin $[cot^{-1}(x+1)] = cos(tan^{-1}x)$, then find x Q.8 Prove that $\tan^{-1}\left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2 - 1 < x < 1$ Q.9 Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}$, $x \in \left(0, \frac{\pi}{2}\right)$ Q.10 Simplify : $\operatorname{Cot}^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)$ for x < -1 Q.11 Write the following functions in the simplest form: (a) $\tan^{-1}\left(\frac{3a^2x-x^3}{a^3-2ax^2}\right)$, $\frac{-1}{\sqrt{2}} < \frac{x}{a} < \frac{1}{\sqrt{2}}$ (b) $\tan^{-1}\left(\frac{acosx-bsinx}{bcosr+asinx}\right)$ (c) $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = \frac{\pi}{4} - \frac{x}{2}, \frac{-\pi}{2} < x < \frac{\pi}{2}$ Q.12 Prove that cos [tan⁻¹ {sin (cot⁻¹x) }] = $\sqrt{\frac{1+x^2}{2+x^2}}$ Q.13 Solve for x : cos (2sin⁻¹x) = $\frac{\pi}{2}$ Q.14 Solve the following equations: (a) $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ (b) $\cos_{-1}(\sqrt{3}x) + \cos^{-1}x = \frac{\pi}{2}$ Q.15 Find least value of $(\sin^{-1}x)^2 + (\cos^{-1}x)^2$. Q.16 If $(\tan^{-1}x)^2 + (\cot^{-1}x)^2 = \frac{5\pi^2}{2}$, find x Q.17 If x,y,z \in [-1] such that cos⁻¹x + cos⁻¹y + cos⁻¹ z = 3 π then find the values of (b) x(y+z) + y(z+x) + z(x+y)(a) xy + yz + zxQ.18 If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$ then find the value of $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ Q.19 Prove that $\sec^2(\tan^{-1}z) + \csc^2(\cot^{-1}3) = 15$ Q.20 If $\cos^{-1}x + \cos^{-1}y = \frac{\pi}{2}$ and $\tan^{-1}x - \tan^{-1}y = 0$, then find the value of $x^2 + xy + y^2$

Chapter-3 & 4

Matrices & Determinants

Q.1 If $2\begin{bmatrix}3 & 4\\5 & x\end{bmatrix} + \begin{bmatrix}1 & y\\0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0\\10 & 5\end{bmatrix}$, find (x-y) Q.2 Find non zero value (s) of x satisfying the matrix equation: $x\begin{bmatrix}2x & 2\\3 & x\end{bmatrix} + 2\begin{bmatrix}8 & 5x\\4 & 4x\end{bmatrix} = \begin{bmatrix}x^2 + 8 & 24\\10 & 6x\end{bmatrix}$ Q.3 Find matrix A such that $\begin{bmatrix}2 & -1\\1 & 0\\-3 & 4\end{bmatrix}A = \begin{bmatrix}-1 & -8\\1 & -2\\9 & 22\end{bmatrix}$ Q.4 Find the value of x such that $\begin{bmatrix}1 & x & 1\end{bmatrix}\begin{bmatrix}1 & 3 & 2\\2 & 5 & 1\\15 & 3 & 2\end{bmatrix}\begin{bmatrix}1\\2\\x\end{bmatrix} = 0$ Q.5 Let $A = \begin{bmatrix}2 & -1\\3 & 4\end{bmatrix}$, $B = \begin{bmatrix}5 & 2\\7 & 4\end{bmatrix}$, $C = \begin{bmatrix}2 & 5\\3 & 8\end{bmatrix}$. Find matrix D such that CD-AB =0 Q.6 (i) If A is a square matrix such that $A^2 = A$, then prove that $(I + A)^3 - 7A = I$ (ii) If A is a square matrix such that $A^2 = I$, then find the simplified value of $(A-I)^3 + (A + A)^3 - 7A$ Q.7 If $P(x) = \begin{bmatrix}\cos x & \sin x\\-\sin x & \cos x\end{bmatrix}$, then show that P(x) P(y) = P(x + y)Q.8 If $A\begin{bmatrix}0 & -\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2} & 0\end{bmatrix}$ and I is the unit matrix of order 2 x 2; show that $I + A = (I - A)\begin{bmatrix}\cos \alpha & -\sin\alpha\\\sin\alpha & \cos\alpha\end{bmatrix}$

Q.9 There are two families. Family P consists of 3 men, 3 women and 12 children . Family Q consists of 2 men and 3 women and 4 children. The recommended daily allowance for calories is men : 2400, women: 2000 , children : 1400 and for proteins men : 60g, women : 40 g and children : 35 g

(i) Using matrix multiplication , calculate the total requirement of calories and proteins of each of the two families.

(ii) Which family is an ideal family.

Q.10 If A = [3 5], B = [7 3], then find a non zero matrix C such that AC= BC.

Q.11 If AB= A and BA = B then show that $A^2 = A$ and $B^2 = B$

Q.12 If A =
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
. Then show that A is a root of the polynomial f(x) = x³ - 6x² + 7x + 2.

Q.13 Find the value of k if the area of the triangle is 35 sq.m. with the vertices (k, 4), (2, -6) and (5,4).

Q.14 For the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ show that $A^3 - 6A^2 + 5A + 11I_3 = 0$. Hence, find A^{-1} Q.15 If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$. Find A^{-1} . Use it to solve the system of equations 2x - 3y + 5z = 11, 3x + 2y - 4z = -5, x + y - 2z = -3Q.16 Use the product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ to solve the system of equations x + 3z = 0, -x + 2y - 2z = 4, 2x - 3y + 4z = -3

Q.17 The monthly income of Aryan and Babban are in the ratio 3:4 and their monthly expenditure are in the ratio 5:7. If each saves Rs. 15000 per month, find their monthly income using matrix method.

Q.18 Solve the system of equations using matrix method:

$$\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 4, \frac{2}{x} + \frac{1}{y} - \frac{3}{z} = 0, \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2, x, y, z \neq 0$$

Q.19 Find a matrix X for which

 $\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} X \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix}$

Q.20 A total amount of Rs. 7000 is deposited in three different savings bank accounts with annual interest rates of 5%, 8% and 8 ½ % respectively. The total annual interest from these three accounts is Rs. 550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts with the help of matrices.

Chapter- 12

Linear Programming Problems

Q.1 Solve the following LPP graphically :

Maximise Z= 1000z + 600y Subject to the constraints $x + y \le 200$ $x \ge 20$ $y - 4x \ge 0$ $x, y \ge 0$ Q.2 Solve the following LPP graphically:

Minimise Z = 5x + 10y

Subject to constraints

 $x + 2y \le 120$

 $x + y \ge 60$

 $x - 2y \ge 0$

x, y ≥ 0

MCQ's

Chapter-1

Q.1 If R = {(x,y) : x,y \in	Z, $x^2 + y^2 \le 4$ } is a relation i	n set Z, then domain of	R is :
(a) {0,1,2}	(b) {-2, -1, 0,1,2}	(c) {0,-1,-2}	(d) {-1,0,1}
Q.2 Let A ={x,y,z} and	B ={1,2} then the number o	f relations from A to B i	s:
(a) 32	(b) 64	(c) 128	(d) 8
Q.3 The relation R def	ined in A = {1,2,3} by a Rb, i	$ a^2 - b^2 \le 5$. Which	of the following is false?
(a) R = {(1,1), (2,2), (3,3), (2,1), (1,2), (2,3), (3	,2)}	
(b) R ⁻¹ = R			
(c) Domain of R =	{1,2,3}		
(d) Range of R = {5	5}		
Q.4 Total number of e	quivalence relations define	d in the set S = {a,b,c} is	5:
(a) 5	(b) 3!	(c) 23	(d) 33
Q.5 Let A = {1,2,3}.The	en number of equivalence r	elations containing (1,2) is:
(a) 1	(b) 2	(c) 3	(d) 4
Q.6 Let A = {1,2,3} and	l R = {(1,2), (2,3)} be a relati	on in A. Then , the mini	mum number of ordered pairs may
be added, so that	R becomes an equivalence	relation is:	
(a) 7	(b) 5	(c) 1	(d) 4

Q.7 For real numbers x and y, we write xRy \Leftrightarrow x – y + $\sqrt{2}$ is an irrational number. Then the relation R is:					
(a) reflexive	(b) symmetric	(c) transitive	(d) None of these		
Q.8 A function $f : R \rightarrow R$ defi	ined by $f(x) - 2 + x^2$ is:				
(a) not one-one	(b) one-one (d	c) not onto (d) n	either one-one onto		
Q.9 Let A = { $x : 1 \le x \le 1$ } a	and f: $A \rightarrow A$ is a function	defined by $f(x) = x x $, th	en f is:		
(a) a bijection	()	o) injection but not surject	tion		
(c) surjection but not injection		d) neither injection nor surjection			
Q.10 Range of $f(x) = \sin^{-1}x +$	tan ⁻¹ x + sec ⁻¹ x is:				
(a) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$	(b) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$	(c) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$	(d) None of these		
Q.11 tan ⁻¹ $\sqrt{3}$ – sec ⁻¹ (-2) is e	equal to:				
(a) <i>π</i>	(b) $-\frac{\pi}{3}$	(c) $\frac{\pi}{3}$	(d) $\frac{2\pi}{3}$		
Q.12 The value of sin $\left[tan^{-1}(-\sqrt{3}) + cos^{-1}(-\frac{\sqrt{3}}{2}) \right]$ is					
(a) 1	(b) -1	(c) 0	(d) None of these		
Q.13 The value of $\sin^{-1}\left[sin\left(-\frac{17\pi}{s}\right)\right]$ is:					
(a) $-\frac{\pi}{6}$	(b) $\frac{\pi}{8}$	(c) $-\frac{\pi}{8}$	(d) $\frac{\pi}{12}$		
Q.14 The value of $\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + sin^{-1}\left(\sin\frac{5\pi}{3}\right)$ is:					
(a) $\frac{\pi}{2}$	(b) $\frac{5\pi}{3}$	(c) $\frac{10\pi}{3}$	(d) 0		
Q.15 Evaluate the determine	$= \Delta = \begin{vmatrix} log_3 512 & log_4 3 \\ log_4 0 & log_4 0 \end{vmatrix}$				
(a) 15/2	$ log_3 8 log_4 9 $ (h) 12	(c) 14/3	(d) e		
(a) = 15/2	-720 then the value of				
(1) + (1)					
(d) \pm 0	(D) ± 3	$(C) \pm 4$	$(a) \pm 5$		
	(h) 24		(4) 216		
(d) o	(U) 24	(C) / Z	(u) 210		
Q.18 If A and B are square matrices each of order 3 and $ A = 5$, $ B = 3$, then the value of $ 3AB $ is:					
(d) 27	(0) 15	12 -3	51		
Q.19 If Aij denotes the cofactor of the element aij of the determinant $\begin{vmatrix} 2 & -3 & 3 \\ 6 & 0 & 4 \\ 1 & 5 & 7 \end{vmatrix}$ then value of					
a ₁₁ A ₃₁ + a ₁₂ A ₃₂ + a ₁₃ A ₃₃ is:					
(a) 0	(b) 5	(c) 10	(d) -5		
Q.20 If C _{ij} denotes the cofactor of element Pij of the matrix P = $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4 \end{bmatrix}$ then the value of C ₃₁ C ₂₃ (P ₃₁ - P ₂₃)					
is:					
(a) 5	(b) 24	(c) -24	(d) -5		
Q.21 If A is singular matrix, then A. (adj A) is:					
(a) Singular	(b) non-singular	(c) symmetric	(d) not defined		
Q.22 Given that A is a square matrix of order 3 and $ A = -4$, then $ adj A $ is equal to:					
(a) -4	(b) 4	(c) -16	(d) 16		

Q.23 The number of all possible matrices of order 2 x 3 with each entry 1 or 2 is: (a) 16 (b) 6 (c) 64 (d) 24 Q.24 If $\begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$, then x +3y - 3z is: (b) 3 (c) 4 (d) 0 (a) 1 Q.25 If matrices A and B are of order $3 \times n$ and $m \times 5$ respectively, then the order of matrix C = 5A + 3B is: (a) 3×5 and m = n (b) 3 x 5 (c) 3 x 3 (d) 5 x 5 Q.26 If A = $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A¹⁰⁰ is equal to (a) 2¹⁰⁰ A (b) 2⁹⁹ A (d) 299A (c) 100A Q.27 In a linear programming problem, the constraints on the decision variables x and y are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feasible region. (a) is not in the first quadrant (b) is bounded in the first quadrant (c) is unbounded in the first quadrant (d) does not exist Q.28 A linear programming problem is as follows: Minimise z = 30x + 50 y subject to the constraints, $3x + 5y \ge 15$ $2x + 3y \leq 18$ $X \ge 0, y \ge 0$ In the feasible region the minimum value of z occurs at: (a) A unique point (b) no point (c) infinitely many points (d) two points only Q.29 The corner points of the feasible region determined by a set of constraints (Linear inequalities) are P (0,5), Q (3,5), R (5,0) and S (4,1) and the objective function is Z = ax + 2by where a, b > 0. The condition on a and b such that the maximum Z occurs at Q and S is: (b) a - 3b = 0(c) a - 2b = 0(a) a - 5b = 0(d) a - 4b = 0Q.30 The graph of the following linear programming problem when the conditions are 50x +25y \leq 500, $x + y \le 12$ and $x \ge 0, y \ge o$ is: (c) bounded (d) None of the above (a) feasible (b) unbounded Q.31 The graph of the inequality 3x + 4y < 12 is: (a) half plane that contains the origin (b) half plane that neither contains the origin nor the points of the line 3x + 4y = 12. (c) whole XOY-plane excluding the points on line 3x+4y = 12(d) None of these Activities: i) Activity -3 (Based on Functions) Model – (i) One-one & on-to Functions. (Boys) (ii) Inverse Trigonometric Functions. (Girls) **Chart** – (i) Domain & Range of all inverse trigonometric Functions. (Boys)

(ii) Number of Functions, Number of one-one functions & on-to Functions. (Girls)